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Abstract

A three-dimensional inverse heat conduction problem in imaging the local heat transfer coefficients for plate finned-

tube heat exchangers utilizing the steepest descent method and a general purpose commercial code CFX4.4 is applied

successfully in the present study based on the simulated measured temperature distributions on fin surface by infrared

thermography.

It is assumed that no prior information is available on the functional form of the unknown local heat transfer

coefficients in the present study. Thus, it can be classified as function estimation for the inverse calculations.

Two different heat transfer coefficients for in-line tube arrangements with different measurement errors are to be

estimated. Results show that the present algorithm can obtain the reliable estimated heat transfer coefficients.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Finned surfaces of the plate finned-tube heat ex-

changers have been in use over a long period of time for

dissipation of heat by convection. Applications for fin-

ned surfaces are widely seen in air-conditioning, elec-

trical, chemical, refrigeration, cryogenics and many

cooling systems in industrial. Kays and London [1] in-

troduced various types of heat transfer surfaces.

For the purpose of energy savings, it is important to

design better heat transfer surfaces such that high effi-

cient heat transfer equipment can be obtained. To

achieve this goal the estimation of local convective heat

transfer coefficients for fin surface becomes very im-

portant in designing the high-performance heat ex-

changers. However, the estimation of the convective

heat transfer coefficient is more difficult to perform than

other common thermo-fluid-dynamic quantities, espe-
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cially in case of non-uniform distributions and/or of

conduction–convection problem.

Recently, Ay et al. [2] used the technique of energy

balance based on infrared thermography to estimate the

local heat transfer coefficients of plate fin in a 2-D in-

verse heat conduction problem. The 3-D inverse heat

conduction problem applied in estimating the local

convective heat transfer coefficients on fin surface has

never been seen in the literature.

The commercial codes can be used to calculate many

practical but difficult direct thermal problems. If one can

device an inverse algorithm, which has the ability to

communicate with those commercial codes by means of

data transportation, a generalized 3-D inverse heat

conduction problem for plate finned-tube heat ex-

changers can thus be established and used to estimate

the local convective heat transfer coefficient.

The technique of combining the inverse algorithms

and commercial code CFX4.4 [3] has been developed by

Huang and Wang [4] and applied to a 3-D inverse heat

conduction problem in estimating the unknown surface

heat flux. Based on the similar algorithm Haung and

Chen [5] estimated successfully the unknown boundary

heat flux in a 3-D inverse heat convection problem.
erved.
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Nomenclature

J ½hðSiÞ� functional defined by Eq. (3)

J 0½hðSiÞ� gradient of functional defined by Eq. (15)
k thermal conductivity

PnðSiÞ direction of descent defined by Eq. (5)

T ðXÞ estimated temperature

DT ðXÞ sensitivity function defined by Eq. (6)

Y ðSiÞ measured temperature

Greek symbols

b search step size

kðXÞ Lagrange multiplier defined by Eq. (12)

e convergence criteria

Superscripts

n iteration index
^ estimated value
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Huang and Cheng [6] estimated the heat generation rate

of chips on a PC board. More recently, Huang and Lee

[7] applied the algorithm to a 3-D optimal control

problem. We should note that all of those applications

are 3-D problems, this implies that the algorithm is

powerful since the three-dimensional inverse problems

are still limited in the open literature.

The objective of the present study is to utilize the

technique of steepest descent method (SDM) [8] together

with commercial code CFX4.4 in estimating local con-

vective heat transfer coefficients of finned surfaces for

the 3-D plate finned-tube heat exchangers based on the

simulated temperature measurements by infrared ther-

mography.

The SDM has great potential in solving three-

dimensional inverse problem. It derives basis from the

perturbational principle [8] and transforms the inverse

problem to the solution of three problems, namely, the

direct problem, the sensitivity problem and the adjoint

problem, which will be discussed in detail in the text.

Fig. 1. A typical plate finned-tube heat exchanger.
2. Direct problem

To develop the methodology for use in determining

the local convective heat transfer coefficients on the fin

surface, we consider the following three-dimensional

inverse heat conduction problem. A typical plate finned-

tube heat exchanger is shown in Fig. 1. The plate fin

with domain Xðx; y; zÞ is illustrated in Fig. 2a, the

boundary surface on Si, i ¼ 1–6, are subjected to a
convective condition with prescribed heat transfer co-

efficient hðSiÞ, i ¼ 1–6, where i ¼ 1–4 represent the edge
boundaries while i ¼ 5 and 6 indicate the top and bot-
tom surfaces, respectively. The heat transfer coefficient

hðSiÞ could be function of temperature in the present
study. The tube boundary surfaces on Si, i ¼ 7–15, are
subjected to a prescribed temperature condition

T ¼ T ðSiÞ, i ¼ 7–15. Here k is the thermal conductivity
of fin.

The formulation of this three-dimensional steady-

state heat conduction problem can be expressed as
o2T ðXÞ
ox2

þ o2T ðXÞ
oy2

þ o2T ðXÞ
oz2

¼ 0; in Xðx; y; zÞ ð1aÞ

�k
oT ðS1Þ
ox

¼ hðS1ÞðT1 � T Þ; on fin surface S1 ð1bÞ

�k
oT ðS2Þ
ox

¼ hðS2ÞðT � T1Þ; on fin surface S2 ð1cÞ

�k
oT ðS3Þ
oy

¼ hðS3ÞðT1 � T Þ; on fin surface S3 ð1dÞ

�k
oT ðS4Þ
oy

¼ hðS4ÞðT � T1Þ; on fin surface S4 ð1eÞ

�k
oT ðS5Þ
oz

¼ hðS5ÞðT1 � T Þ; on fin surface S5 ð1fÞ

�k
oT ðS6Þ
oz

¼ hðS6ÞðT � T1Þ; on fin surface S6 ð1gÞ

T ¼ T ðSiÞ; on tube surfaces; i ¼ 7–15 ð1hÞ



Fig. 2. (a) The geometry of plate fin for the present study. (b)

The grid system for the present study.
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Due to the nature that the edge surface area Si, i ¼ 1–4 is
small enough when comparing with top and bottom

surfaces Si, i ¼ 5–6. This also implies that the heat
transfer rate through Si, i ¼ 1–4 is rather smaller than Si,
i ¼ 5–6. For this reason we assumed that the boundary
conditions on surface Si, i ¼ 1–4 are insulated. More-
over, the fin thickness is very thin, so the temperature

distribution on S5 should be very close to S6, for this
reason it is also reasonable to assumed the heat transfer

coefficients on S5 equal to S6, i.e. hðS5Þ ¼ hðS6Þ. The di-
rect problem becomes

o2T ðXÞ
ox2

þ o2T ðXÞ
oy2

þ o2T ðXÞ
oz2

¼ 0; in Xðx; y; zÞ ð2aÞ

oT ðSiÞ
on

¼ 0; on fin surface Si; i ¼ 1–4 ð2bÞ

�k
oT ðS5Þ
oz

¼ hðS5ÞðT1 � T Þ; on fin surface S5 ð2cÞ

�k
oT ðS6Þ
oz

¼ hðS6ÞðT � T1Þ; on fin surface S6 ð2dÞ

T ¼ T ðSiÞ; on tube surfaces; i ¼ 7–15 ð2eÞ

The direct problem considered here is concerned with

calculating the plate fin temperatures when the heat

transfer coefficient hðSiÞ, i ¼ 5 and 6, thermal conduc-
tivity and boundary condition on tube surfaces are

known. The solution for the above 3-D heat conduction
problem in domain X is solved using CFX4.4 and it�s
Fortran subroutine USRBCS.
3. The inverse problem

For the inverse problem, the local heat transfer co-

efficient hðSiÞ, i ¼ 5 and 6, is regarded as being un-
known, but everything else in Eq. (2) is known. In

addition, the simulated temperature readings using in-

frared thermography on the fin surface S5 and S6 are
assumed available.

Let the temperature reading taken by infrared scan-

ners on fin surfaces S5 and S6 be denoted by

Y ðSiÞ � Y ðxm; ymÞ � YmðSiÞ, m ¼ 1–M and i ¼ 5 and 6,
where M represents the number of measured tempera-

ture extracting points. We note that the measured tem-

perature YmðSiÞ contain measurement errors. Then the
inverse problem can be stated as follows: by utilizing the

above mentioned measured temperature data YmðSiÞ,
estimate the unknown local heat transfer coefficient

hðSiÞ, i ¼ 5 and 6.
The solution of the present inverse problem is to be

obtained in such a way that the following functional is

minimized:

J ½hðSiÞ� ¼
XM
m¼1

½TmðSiÞ � YmðSiÞ�2; i ¼ 5 and 6 ð3Þ

here, TmðSiÞ are the estimated or computed temperatures
at the measured temperature extracting locations

(xm; ym). These quantities are determined from the solu-

tion of the direct problem given previously by using the

estimated local heat transfer coefficient hðSiÞ.
4. Steepest destent method for minimization

The following iterative process based on the SDM [8]

is now used for the estimation of unknown heat transfer

coefficient hðSiÞ by minimizing the functional J ½hðSiÞ�

hnþ1ðSiÞ ¼ hnðSiÞ � bnP nðSiÞ;
for n ¼ 0; 1; 2; . . . and i ¼ 5; 6 ð4Þ

where bn is the search step size in going from iteration n
to iteration nþ 1, and PnðSiÞ is the direction of descent
(i.e. search direction) given by

PnðSiÞ ¼ J 0nðSiÞ; i ¼ 5 and 6 ð5Þ

which is identical to the gradient direction J 0nðSiÞ at it-
eration n.
To perform the iterations according to Eq. (4), we

need to compute the step size bn and the gradient of the

functional J 0nðSiÞ. In order to develop expressions for the
determination of these two quantities, a ‘‘sensitivity
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problem’’ and an ‘‘adjoint problem’’ are constructed as

described below.

4.1. Sensitivity problem and search step size

It is assumed that when hðSiÞ undergoes a variation
Dh, T is perturbed by T þ DT . Then replacing in the
direct problem h by hþ Dh and T by T þ DT , sub-
tracting from the resulting expressions the direct prob-

lem and neglecting the second-order terms, the following

sensitivity problem for the sensitivity function DT are

obtained:

o2DT ðXÞ
ox2

þ o2DT ðXÞ
oy2

þ o2DT ðXÞ
oz2

¼ 0; in Xðx; y; zÞ

ð6aÞ

oDT ðSiÞ
on

¼ 0; on fin surfaces Si; i ¼ 1–4 ð6bÞ

�hDT þ k
oDT
oz

¼ DhðT � T1Þ; on fin surface S5

ð6cÞ

hDT þ k
oDT
oz

¼ DhðT1 � T Þ; on fin surface S6 ð6dÞ

DT ¼ 0; on tube surfaces; i ¼ 7–15 ð6eÞ

CFX 4.4 is used to solve above sensitivity problem.

The functional J ½hnþ1ðSiÞ� for iteration nþ 1 is ob-
tained by rewriting Eq. (3) as

J ½hnþ1ðSiÞ� ¼
XM
m¼1

½TmðSi; hn � bnPnÞ � YmðSiÞ�2;

i ¼ 5 and 6 ð7Þ

where we replaced hnþ1 by the expression given by Eq.
(4). If temperature Tmðhn � bnP nÞ is linearized by a

Taylor expansion, Eq. (7) takes the form

J ½hnþ1ðSiÞ� ¼
XM
m¼1

½TmðSi; hnÞ � bn DTmðSi; PnÞ � YmðSiÞ�2;

i ¼ 5 and 6 ð8Þ

where TmðSi; hnÞ is the solution of the direct problem by
using estimate heat transfer coefficient for exact heat

transfer coefficient on Si, i ¼ 5 and 6. The sensitivity
functions DTmðSi; PnÞ are taken as the solutions of

problem (6) at the measured temperature extracting

positions (xm; ym; zm) by letting Dh ¼ Pn. The search step

size bn is determined by minimizing the functional given

by Eq. (8) with respect to bn. The following expression

results:

bn ¼
PM

m¼1½TmðSiÞ � YmðSiÞ�DTmðSiÞPM
m¼1½DTmðSiÞ�

2
; i ¼ 5 and 6 ð9Þ
4.2. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (2a) is multiplied

by the Lagrange multiplier (or adjoint function) kðXÞ
and the resulting expression is integrated over the cor-

respondent space domain. Then the result is added to

the right hand side of Eq. (3) to yield the following ex-

pression for the functional J ½hðS5Þ�:

J ½hðSiÞ� ¼
XM
m¼1

½TmðSiÞ � YmðSiÞ�2 þ
Z

X
½kðXÞ � r2T �dX

¼
Z
Si

½T ðSiÞ � Y ðSiÞ�2dðx� xmÞdðy � ymÞdSi

þ
Z

X
½kðXÞ � r2T �dX

in Xðx; y; zÞ; i ¼ 5 and 6 ð10Þ

The variation DJ can be obtained by perturbing h by Dh
and T by DT in Eq. (10), subtracting from the resulting
expression the original Eq. (10) and neglecting the sec-

ond-order terms. We thus find

DJ ½hðSiÞ� ¼
Z
Si

2½T ðSiÞ � Y ðSiÞ�DT ðSiÞdðx� xmÞ

� dðy � ymÞdSi þ
Z

X
½kðXÞ � r2DT �dX

in Xðx; y; zÞ; i ¼ 5 and 6 ð11Þ

where dð�Þ is the Dirac delta function and (xm; ym),
m ¼ 1–M , refers to the measured temperature extracting
positions. In Eq. (11), the domain integral term is re-

formulated based on the Green�s second identity; the
boundary conditions of the sensitivity problem given by

Eqs. (6b)–(6e) are utilized and then DJ is allowed to go
to zero. The vanishing of the integrands containing DT
leads to the following adjoint problem for the determi-

nation of kðXÞ:

o2kðXÞ
ox2

þ o2kðXÞ
oy2

þ o2kðXÞ
oz2

¼ 0; in Xðx; y; zÞ ð12aÞ

okðXÞ
on

¼ 0; on fin surfaces Si; i ¼ 1–4 ð12bÞ

� khþ k
ok
on

¼ 2k½T ðS5Þ � Y ðS5Þ�dðx� xmÞdðy � ymÞ;

on fin surface S5 ð12cÞ

khþ k
ok
on

¼ 2k½T ðS6Þ � Y ðS6Þ�dðx� xmÞdðy � ymÞ;

on fin surface S6 ð12dÞ

k ¼ 0; on tube surfaces; i ¼ 7–15 ð12eÞ
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Finally, the following integral term is left:

DJ ¼
Z
S5

kðS5Þ
k

½T ðS5Þ � T1�DhðS5ÞdS5

�
Z
S6

kðS6Þ
k

½T ðS6Þ � T1�DhðS6ÞdS6 ð13Þ

From definition [9], the functional increment can be

presented as

DJ ¼
Z
S5

J 0ðS5ÞDhðS5ÞdS5 �
Z
S6

J 0ðS6ÞDhðS6ÞdS6 ð14Þ

A comparison of Eqs. (13) and (14) leads to the fol-

lowing expression for the gradient of the functional

J ½hðSiÞ�:

J 0½hðSiÞ� ¼
kðSiÞ
k

½T ðSiÞ � T1�; on surfaces Si;

i ¼ 5 and 6 ð15Þ
We note that based on Eq. (12e) the gradient J 0 on tube

surface is always equal to zero. If the initial guess values

of h0 cannot be predicted correctly before the inverse
calculation, the estimated values of heat transfer coeffi-

cients will deviate from exact values near the tube sur-

face. This is the case in the present study!
Fig. 3. The exact value for (a) heat transfer coefficients and (b)

measured temperatures in test case 1.
4.3. Stopping criterion

If the problem contains no measurement errors, the

traditional check condition is specified as

J ½hnþ1ðSiÞ� < e; i ¼ 5 and 6 ð16Þ

where e is a small-specified number. However, the ob-
served temperature data may contain measurement er-

rors. Therefore, we do not expect the functional

equation (3) to be equal to zero at the final iteration

step. Following the experiences of the authors [2,4–6,9],

we used the discrepancy principle as the stopping crite-

rion, i.e. we assume that the temperature residuals may

be approximated by

TmðSiÞ � YmðSiÞ � r; i ¼ 5 and 6 ð17Þ

where r is the standard deviation of the measurements,
which is assumed to be a constant. Substituting Eq. (17)

into Eq. (3), the following expression is obtained for

stopping criteria e:

e ¼ 2Mr2 ð18Þ

Then, the stopping criterion is given by Eq. (16) with e
determined from Eq. (18).
Fig. 4. The estimated value with r ¼ 0:0 for (a) heat transfer
coefficients and (b) measured temperatures in test case 1.
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5. Computational procedure

The computational procedure for the solution of this

inverse problem using SDM may be summarized as

follows:

Suppose hnðSiÞ is available at iteration n.

Step 1. Solve the direct problem given by Eq. (2) for

T ðXÞ.
Step 2. Examine the stopping criterion given by Eq. (16)

with e given by Eq. (18). Continue if not satis-
fied.

Step 3. Solve the adjoint problem given by Eq. (12) for

kðXÞ.
Step 4. Compute the gradient of the functional J 0 from

Eq. (15).

Step 5. Compute the direction of descent Pn from Eq.

(5).

Step 6. Set Dh ¼ Pn, and solve the sensitivity problem

given by Eq. (6) for DT ðXÞ.
Step 7. Compute the search step size bn from Eq. (9).
Fig. 5. The estimated value with r ¼ 0:1 for (a) heat transfer c
Step 8. Compute the new estimation for hnþ1 from Eq.

(4) and return to step 1.
6. Results and discussions

The objective of the present study is to show the

validity of the SDM in estimating the local surface heat

transfer coefficients for a three-dimensional plate finned-

tube heat exchangers with no prior information on the

functional form of the unknown function. The physical

model for this problem is described as follows: The

thermal conductivity for plate fin is taken as k ¼ 43 W/
(m2 K), ambient temperature is chosen as T1 ¼ 300 K
and the temperatures on tube surface are assumed as

T ðSiÞ ¼ 333 K, i ¼ 7–16.
To illustrate the ability of the SDM in predicting

hðSiÞ, i ¼ 5 and 6, with inverse analysis from the

knowledge of the simulated measured temperature dis-

tributions on fin surface, we consider two numerical test

cases with different variation of hðSiÞ.
oefficients and (b) measured temperatures in test case 1.
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One of the advantages of using the SDM is that the

initial guesses of the unknown heat transfer coefficients

hðSiÞ can be chosen arbitrarily. In all the test cases
considered here, the initial guesses of heat transfer co-

efficients used to begin the iteration are taken as

hðSiÞ ¼ 0:0.
In order to compare the results for situations in-

volving random measurement errors, we assume nor-

mally distributed uncorrelated errors with zero mean

and constant standard deviation. The simulated inexact

measurement data Y can be expressed as

Ym ¼ Ym;exact þ xr ð19Þ

where Ym;exact is the solution of the direct problem with

an exact heat transfer coefficients; r is the standard de-
viation of the measurements; and x is a random variable
that generated by subroutine DRNNOR of the IMSL

[10] and will be within )2.576 to 2.576 for a 99% con-

fidence bound.
Fig. 6. The estimated value with r ¼ 0:4 for (a) heat transfer c
We now present below the numerical experiments in

determining hðSiÞ by the inverse analysis.

6.1. Numerical test case 1

The geometry for the first test case is shown in Fig.

2a, which represents an in-lined tube arrangement for a

fin plate. The dimension for fin in x-, y- and z-directions
is 167, 167 and 1 mm, respectively. The radius of tube is

taken as 12.7 mm and the longitudinal pitch of tube (i.e.

the distance between center of two tubes) is 60.7 mm.

The grid system for the present study is shown in Fig.

2b. The grid in z-direction is taken as 5 and the total grid
number on x–y plane is 1800, therefore there are totally
9000 grids in the present study.

The exact surface heat transfer coefficients is assumed

as constant on S5 and S6 and are taken as hðS5Þ ¼
hðS6Þ ¼ 10 W/(m2 K) in test case 1.

The three-dimensional inverse problem is first ex-

amined by using exact measurements, i.e. r ¼ 0:0. The
oefficients and (b) measured temperatures in test case 1.
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exact heat transfer coefficients hðS5Þ and exact temper-
ature measurements Y ðS5Þ are shown in Fig. 3a and b,
respectively.

By setting stopping criteria e ¼ 0:01, after 42 itera-
tions the inverse solutions converged. The estimated

heat transfer coefficients and estimated (or calculated)

fin surface temperature are shown in Fig. 4a and b, re-

spectively.

By comparing those figures we find that the estimated

temperatures are almost identical to the measured tem-

peratures since the relative error between these two

temperatures is calculated as ERR1¼ 0.03%, where
ERR1 is defined as

ERR1% ¼
XM
m¼1

TmðS5Þ � YmðS5Þ
YmðS5Þ

����
����

" #,
ðMÞ � 100%

ð20Þ

here M represents the number of grids.

The estimated heat transfer coefficients are also very

close to the exact value except for the position near tube
Fig. 7. The exact value for (a) heat transfer coefficien
surface. This is due to the singularity of the gradient

equation on tube surface as was discussed previously.

The accuracy of estimated heat transfer coefficients near

tube surface can be improved by increasing the number

of iterations, however, CPU time for the calculations

will also be increased.

The relative error between exact and estimated heat

transfer coefficients is calculated as ERR2¼ 2.15%,
where ERR2 is defined as

ERR2% ¼
XM
m¼1

hmðSiÞ � ĥhmðSiÞ
hmðSiÞ

�����
�����

" #,
ðMÞ � 100%

ð21Þ

here M represents the number of grids and ĥhmðSiÞ indi-
cates the estimated values.

The inverse calculation is then proceed to consider

the inexact temperature measurements. The standard

deviation of the measurements is first taken as r ¼ 0:1,
then it was increased to r ¼ 0:4.
ts and (b) measured temperatures in test case 2.



Fig. 8. The estimated value with r ¼ 0:0 for (a) heat transfer coefficients and (b) measured temperatures in test case 2.
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For r ¼ 0:1, 20 iterations are needed to satisfy the
stopping criteria based on the discrepancy principle, the

estimated heat transfer coefficients and temperatures are

shown in Fig. 5a and b, respectively. The relative errors

for temperatures and heat transfer coefficients are cal-

culated as ERR1¼ 0.23% and ERR2¼ 5.92%. For
r ¼ 0:4, the number of iterations to satisfy the stopping
criteria is only 8, the estimated heat transfer coefficients

and temperatures are shown in Fig. 6a and b, respec-

tively, and the relative errors for temperatures and heat

transfer coefficients are calculated as ERR1¼ 2.51% and
ERR2¼ 11.72%.

6.2. Numerical test case 2

In order to show the potential of the present algo-

rithm for use in a three-dimensional inverse problem, we

consider the second numerical test case. The geometry

and grid systems of this case are the same as used in test

case 1.

The exact distribution for heat transfer coefficients

is now assumed varying linearly on S5 from 10 to 70
W/(m2 K) as shown in Fig. 7a, while Fig. 7b represents

the exact temperature measurements.

When assuming r ¼ 0:0 and setting e ¼ 0:01, after 45
iterations the estimated heat transfer coefficients can be

obtained. The estimated heat transfer coefficients and

temperatures are shown in Fig. 8a and b, respectively. It

is obvious that the estimated values around tube surface

are slightly deviated from the exact values, however the

overall estimations are still reliable. ERR1 and ERR2

are calculated as 0.09% and 3.75%, respectively.

From above two numerical test cases we concluded

that the SDM is now applied successfully in this three-

dimensional inverse heat conduction problem for pre-

dicting the surface heat transfer coefficients of plate fin.
7. Conclusions

The SDM with adjoint equation was successfully

applied for the solution of a three-dimensional inverse

heat conduction problem in determining the local

heat transfer coefficients for plate finned-tube heat
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exchangers. Two test cases involving different type of

heat transfer coefficients and different measurement er-

rors were considered. The results show that the SDM

does not require a priori information for the functional

form of the unknown functions and the reliable esti-

mated values can always be obtained.
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